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Abstract 

 

STATINS INDUCE APOPTOSIS AND AUTOPHAGY IN PRIMARY 

AND TRANSFORMED MAST CELLS 

By Patrick A. Paez 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

in Biology at Virginia Commonwealth University. 

Virginia Commonwealth University, 2016 

Major Advisor:  

John J. Ryan, Ph.D., Professor of Biology, Associate Vice President for Research Development  

Statin drugs are widely employed in the clinic to reduce serum low density lipoproteins (LDLs) in 

patients with hypocholesteremia. In addition to their cholesterol-lowering effects through HMG 

CoA reductase antagonism, isoprenyl lipids necessary for membrane anchorage and signaling of 

small G-proteins are abrogated. We previously found that statins suppress mast cell activation in 

murine and human cells, suggesting these drugs might be useful in treating allergic disease.  While 

mast cell function is critical to allergic inflammation, mast cell hyperplasia and survival also 

impact these diseases, and were not studied in our previous work. In this study, we describe 

Fluvastatin-mediated apoptosis in both primary and transformed mast cells. An IC50 was achieved 

between 1-5μM in both systems, and apoptosis was preceded by mitochondrial dysfunction and 

caspase release. In addition to apoptosis, our work also uncovered evidence of autophagy, which 

can serve as a compensatory mechanism during apoptosis. Interestingly, autophagy appeared to be 
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cyto-protective in the primary cells yet cytotoxic in transformed mast cells. These findings offer 

insight into the mechanisms of mast cell survival and support the possible utility of statins in mast 

cell-associated allergic and neoplastic diseases. 
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ERK:  Mitogen activated protein kinase (MAPK) 

AKT/PKB: Protein kinase B, a serine/threonine kinase 
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Introduction 

 
Statin drugs were released for consumption by the FDA in the early 1990’s to combat the rising 

trend in hypercholesterolemia in the United States. These drugs reduce serum cholesterol and 

low density lipoproteins (LDLs), which have been linked to increased risk of coronary heart 

disease (CHD) and stroke (1). However, statins have also been noted to have anti-inflammatory 

and anti-neoplastic effects that warrant further study. The pharmacological mechanism of statins 

is HMG-CoA reductase (HMGCR) antagonism. HMGCR is the rate-limiting step in cholesterol 

synthesis, yielding mevalonic acid. While mevalonic acid is processed to cholesterol, side 

reactions in this cascade also generate the isoprenoids geranylgeranyl pyrophosphate and 

farnesyl pyrophosphate. Isoprenylation is required for Ras, Rac and Rho subcellular localization. 

Since these proteins are critical to cellular proliferation, migration, and cytokine production, 

there is great interest in determining if isoprenoid blockade is the means by which statins disrupt 

cell signaling (2, 3). Understanding this process could lead to new drug targets for inflammatory 

and neoplastic disorders. 

Epidemiological studies have noted that asthmatic patients prescribed statins experienced 

fewer emergency department visits for their allergic conditions as compared to their counterparts 

(4, 5). These studies have posed the question of what roles statins play in the cellular and 

molecular signaling of sentinel immune cells that provoke the allergic response. Mast cells play 

an early role in allergies when activated through the high affinity immunoglobulin E (IgE) 

receptor (FcεRI). Antigen-mediated crosslinking of IgE bound to FcεR induces the release of 

preformed granules containing proteases and histamine as well as cytokine secretion. 

Collectively these mediators induce vasodilation and bronchoconstriction, leading to edema, 

dyspenia, tissue damage, and even systemic shock. Exploring the importance of isoprenoid 
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inhibition through statin treatment could reveal fundamental aspects of mast cell biology and 

offer new therapeutic avenues for allergic disease.  

In addition to their role in allergic disease, mast cells can form neoplasms. Mast cell 

leukemia is a form of acute myelogenous leukemia (AML) that constitutes approximately 3% of 

leukemias. Diagnosis requires one major or three minor criteria. The major criteria for diagnosis 

is dense multifocal infiltration of mast cells in the bone marrow or extracutaneous organs. The 

four prototypical minor criteria are: >25% of mast cell infiltration in biopsies with atypical 

morphology, mast cells in the bone marrow being >25% immature or atypical, D816V CD117 

(cKIT) mutation, expression of CD2 and/or CD25, and total serum tryptase exceeding 20ng/mL 

consistently (6). 

Statins have been shown to induce macroautophagy, hereafter referred to as autophagy 

(2). Autophagy has several survival adaptation roles, as it degrades internal organelles to create 

energy while in a catabolic state. However, its adaptation properties are dependent on cellular 

state and metabolism (7, 8). The autophagic process is often a pro-survival pathway used by 

cancer cells in response to nutrient deprivation or various toxic insults such as chemotherapeutic 

agents. But autophagy can also be cytotoxic, as it can enhance intracellular apoptotic signals (9). 

Interestingly, a recent study has shown that mast cells have a constant autophagic flux necessary 

for granule maintenance (10). Statins have been shown to alter autophagy and cause 

mitochondrial dysfunction (11). How this may impact mast cell function and survival is 

unknown.  Statins can also play roles in neoplastic conditions potentially serving both pro- and 

anti-metastatic functions. The differences observed were dependent on the cancer type, stage, 

and degree of immunological involvement. In one study, Fluvastatin inhibited metastasis of 

pancreatic cancer and in another study it was shown to induce apoptosis of transplanted rat 
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hepatocarcinoma (12, 13). These studies have provided the interest for studying statin induced 

apoptosis and autophagy. 

A recent paper from our group demonstrated that statins are powerful suppressors of IgE-

mediated mast cell activation (14, 15) . Of the statins tested, Fluvastatin was most effective in 

suppressing cytokine production. During these studies, we noted that prolonged treatment caused 

apoptosis. The current work builds on this initial observation, showing that Fluvastatin induces 

both apoptosis and autophagy capable of killing primary or transformed mast cells. We provide 

some mechanistic insights, narrowing the focus of Fluvastatin action and offering support for the 

possible clinical use of statins in mast cell-associated diseases. 

 

Methods and Materials 

Animals: 

 

C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor, ME). Mice were 

maintained at Virginia Commonwealth University (VCU) facilities in accordance with 

Institutional Animal Care and Use Committee guidelines (IACUC). 

 

Bone Marrow-Derived Mast cell Cultures (BMMC): 

 

Bone marrow-derived mast cell cultures (BMMC) were extracted from femurs and tibias and 

placed in complete RPMI (cRPMI) 1640 medium (Invitrogen Life Technologies, Carlsbad, CA) 

containing 10% FBS, 2mM L-glutamate, 10 U/mL penicillin, 10 μg/mL of streptomycin, 1mM 

sodium pyruvate, and 10mM HEPES (Biofluids, Rockville, MD), supplemented with SCF-

containing supernatant from BHK-MKL cells and IL-3 from WEHI-3B cells for 21 days. Final 
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concentrations of SCF and IL-3 are adjusted to 15 ng/mL and 10 ng/mL, respectively, as 

measured by ELISA.  

Flow Cytometric analysis:  

Apoptosis Analysis: 

Propidium Iodide-DNA (PI-DNA) staining was performed on cells after 4 hours to 7 days of 

fixation in PI fixation buffer (36% ethanol, 12.8% fetal calf serum, and 50.8% 1X PBS) . 

(Thermo Fisher, Waltham, MA). All flow cytometric analysis was done using a BD 

FACSCaliber (BD Biosciences, San Jose, CA). 

Mitochondrial Staining: 

Di(OC6)3 (3,3’-Dihexyloxacarboncyanine iodide), a membrane-permeable dye was used to 

analyze mitochondrial integrity at a concentration of 1nM (Enzo Life Sciences, Farmingdale, 

NY). Caspase 7/9 activity DEVD assays were used to assess the presence of active caspases 

(Thermo Fisher, Waltham, MA). All flow cytometric analysis was done using a BD 

FACSCaliber (BD Biosciences, San Jose, CA). 

Cell Receptor Staining: 

Cell surface staining was conducted using antibodies against the following mouse proteins: 

CD117 (c-KIT), CD25, CD2, CD16/CD32, (eBiosciences, Waltham, MA). All flow cytometric 

analysis was done using a BD FACSCaliber (BD Biosciences, San Jose, CA). 

Autophagy Assessment with Acridine Orange: 

 Acridine Orange (AO) staining was used for assessment of acidic vesicles associated with the 

process of autophagy (Sigma-Aldrich, Saint Louis, MO). Cells were treated with a final 

concentration of 1µg/mL for 15 minutes. All flow cytometric analysis was done using a BD 
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FACSCaliber (BD Biosciences, San Jose, CA). 

Fluorescent Microscopy: 

Cells were stained with anti CD16/CD32, FITC cKIT (CD117), and acridine orange at a 

concentration of 1µg/mL for 30 minutes. Cells were then washed and spun onto glass slides for 

imaging using a Cytospin centrifuge (Thermo Fisher, Waltham, MA) and images were captured 

using a Nikon Eclipse E600/ C1 confocal microscope. Images were created using the EZ-C1 3.80 

software. 

Western Blotting: 

 Western blots were conducted using standard SDS-PAGE protocol on a 4-20% gradient 

polyacrylamide gel. Nitrocellulose membrane (0.45μM) was purchased from Bio-Rad (Hercules, 

CA).  The following primary antibodies were used: LC3I/II (1:1000), p62 (1:1000), GAPDH 

(1:1000), ERK1/2 (1:1000), phospho-ERK1/2 (1:1000), AKT (1:1000), phospho-AKTser473 

(1:1000), p85 (1:1000), phospho-p85 (1:1000) (Cell Signaling, Danvers, MO). Western blot 

membranes were blocked with TBS-bovine serum albumin (BSA) and primary antibodies 

incubated for three days in TBS/0.1% Tween (TBS-T 0.1%) and (0.5% BSA Blocker ™) all 

purchased from Thermo Fisher, Waltham, MA). Western blots were read using infrared-

conjugated secondary antibodies on an Odyssey Imaging System (LI-COR, Lincoln, NE).  

Statistics: 

Data shown in each figure are the mean ± standard deviations (SD). The number of populations 

per experiment is depicted as (N). Graphical and statistical analysis were conducted on Graph 

Pad-Prism 7. For comparisons of two samples, a Student’s t-Test was applied unless otherwise 

stated. Significance was assigned as follows: *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.  
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Results: 

 

Fluvastatin induces apoptosis in C57BL/6 BMMCs. 

 

We recently published that Fluvastatin suppresses IgE-mediated activation of mast cells and 

basophils. Upon further investigation, it was noted that Fluvastatin also causes apoptosis of bone 

marrow derived mast cells (BMMC). BMMCs were co-cultured for 72-hours in cRPMI 

supplemented with SCF and IL-3 at 10 ng/mL, plus either vehicle (DMSO) or Fluvastatin 10 

µM. PI-DNA staining was conducted to detect sub-diploid DNA, indicative of apoptosis. It was 

found that over 50% of the BMMCs were undergoing apoptosis by 48-hours and over 90% by 

72-hours in Fluvastatin treatment (Figure 1A). A dose response of Fluvastatin was conducted at 

72-hours, and an IC50 was found between 1-5µM as determined by PI-exclusion via flow 

cytometry (Figure 1B). A 72-hour dose response to Fluvastatin confirmed the presence of active 

caspase 3/7, as determined by flow cytometry (Figure 1C). Interestingly, BMMCs treated with 

Fluvastatin undergo apoptosis with no discernable cell cycle arrest, even in the 24 hours 

preceding detectable (Figure 1D). Instead, all phases of the cell cycle were reduced by 

Fluvastatin, with only the apoptotic fraction increasing. These data demonstrate that Fluvastatin 

induces mast cell apoptosis after a 24-hour delay that is not preceded by cell cycle arrest.  

 

Fluvastatin Decreases SCF Survival Signals in BMMCs. 
 

It has been published that statin-mediated apical antagonism of HMG-CoA reductase in the 

cholesterol pathway not only lowers plasma cholesterol, but also the production of isoprenyl 

lipids (16). This effective inhibition of the downstream farnesyl and geranylgeranyl transferases 

led us to ask how the survival signals provided from cKIT (CD117) binding its ligand stem cell 
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factor (SCF) are modulated by Fluvastatin.  BMMCs were treated for 24-hours in cRPMI 

supplemented with SCF and IL-3 at 10 ng/mL, plus either vehicle (DMSO) or Fluvastatin 10µM. 

BMMCs were then starved of IL-3+SCF for four hours in cRPMI prior to SCF (200 ng/mL) re-

stimulation. The unstimulated groups (Unstim) were treated with media alone. Whole cell lysates 

were collected at 5, 15, and 30 minute intervals and Western blots for pERK1/2 and 

pAKT(Ser473) were performed (Figure 2A). A representative blot shows decreased pERK when 

comparing Fluvastatin treatment to vehicle (DMSO) to groups. The normalization of pERK1/2 to 

total ERK1/2 was quantified as fold increase from the baseline unstimulated group (Unstim) for 

each time point (Figure 2B). By comparison, AKT phosphorylation trended down at some time 

points, but did not reach statistical significance. These data support the theory that inhibition of 

small G-proteins has downstream effects on the cKIT-to-MAPK signaling pathway used for 

survival. 

Apoptosis is dependent on p53 expression and mitochondrial stability 

 

Apoptosis is often mediated through p53 signaling originating from DNA damage, oxidative 

stress or uncontrolled proliferation (17). Here we examined the role of p53 by using p53-

deficient (“knockout” (KO)) BMMCs compared to their background- and age-matched C57BL/6 

counterparts. BMMCs were cultured in either vehicle (DMSO) or Fluvastatin (10μM) in cRPMI 

with IL-3 and SCF at 10 ng/mL over a 72-hour time course. It was found that p53KO BMMCs 

compared to C57BL/6 wild type (WT) underwent significantly less apoptosis when treated with 

Fluvastatin (Figure 3A). Since p53 activation can induce mitochondrial damage, and statins have 

been shown to induce mitochondrial dysfunction (11), we sought to determine the effect of 

overexpressing the anti-apoptotic mitochondrial protein Bcl-2. We cultured age- and strain-

matched Bcl-2 transgenic and C57BL/6 WT BMMCs in cRPMI with IL-3 and SCF at 10 ng/mL 
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over a 72-hour time course and measured apoptosis via PI-DNA. This showed that the Bcl-2 

transgenic BMMCs displayed significantly less apoptosis than C57BL/6 WT BMMCs (Figure 

3B). These results indicate a role for the p53-mitocondrial pathway in Fluvastatin-mediated 

apoptosis.  

Fluvastatin induces cyto-protective autophagy in BMMCs 

 

 It has been widely published that statins cause autophagy in a variety of cell types (2). Since 

autophagy can promote or inhibit apoptosis, we assessed Fluvastatin-induced mast cell 

autophagy. One measure of autophagy is the accumulation of cleaved light chain associated 

microtubule (LC3 II), as detected by Western blotting. Chloroquine raises lysosomal pH and 

inhibits lysosomal fusion, allowing autophagy-induced LC3 II to accumulate. Because mast cells 

undergo constitutive autophagy (18), we used chloroquine treatment alone to determine the 

baseline amount of LC3 II present, and compared this to cells receiving the known autophagy 

inducer Rapamycin as a positive control.  Figure 4A shows an increase of LC3 II following 24-

hour chloroquine treatment, confirming the basal level of autophagy. As expected, 

Rapamycin+chloroquine increased LC3 II levels. Importantly, Fluvastatin+chloroquine induced 

more LC3 II than chloroquine alone, suggesting that Fluvastatin increases basal autophagy. 

Western blot normalization to GAPDH is displayed in Figure 4B. These data suggest that 

Fluvastatin elicits autophagy in primary mast cells at time point preceding apoptosis. 

 To determine how autophagy affects Fluvastatin-induced apoptosis, we blocked 

autophagy with chloroquine or bafilomycin A, and measured sub-diploid DNA content. 

Bafilomycin A1 inhibits the vacuolar H+ pump, preventing degradation of the sequestered 

components of autophagy. BMMCs were treated for 48-hours in IL-3&SCF plus vehicle 

(DMSO) or Fluvastatin in combination with chloroquine 10μM (CQ) or bafilomycin A1 
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(200nM) (Figure 4C, 4D).  We found that chloroquine or bafilomycin A1 alone slightly 

increased apoptosis, and that each significantly enhanced Fluvastatin-mediated apoptosis. These 

data suggest that Fluvastatin-induced autophagy is cyto-protective in primary mast cells, since its 

blockade increased cell death.  

 

Fluvastatin induces apoptosis in transformed mast cells. 

 

We next determined if Fluvastatin-induced apoptosis extended to neoplastic mast cells. P815 

mastocytoma cells were cultured in either vehicle (DMSO) or a dose response of Fluvastatin 

prior to collection at 96-hours for analysis with PI-DNA staining (Figure 5A).  Nearly 80% of 

the cells were killed by this treatment, with an IC50 between 2.5-5μM, similar to BMMCs. Time 

course analysis also revealed a slightly slower apoptotic response than primary mast cells 

(Figure 5B) and a modest but significant G2 arrest at the 24-hour time point preceding apoptosis 

(Figure 5C). 

 

Fluvastatin treatment causes loss of mitochondrial potential and release of caspase 9 

in transformed mast cells. 
 

Because Fluvastatin-induced apoptosis was suppressed by Bcl-2 overexpression in BMMC, we 

investigated the effect of Fluvastatin on mitochondrial stability in P815 cells. Cells were treated 

for 48-hours in vehicle (DMSO) or Fluvastatin and stained with Di(OC6)3, a dye with high 

affinity for the mitochondria. Decreased staining indicates loss of the trapped dye, consistent 

with mitochondrial membrane damage. P815 cells treated with Fluvastatin at .625μM or 10μM 

exhibited diminished Di(OC6)3 staining compared to vehicle-treated cells (Figure 6A). Given 

this indication of mitochondrial damage, we next assessed the presence of active caspase 9, 

which results from mitochondrial leakage. P815 cells were treated for 24 and 48-hour with 
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vehicle (DMSO) and Fluvastatin (10μM), then assessed for active caspase activity via flow 

cytometry using a fluorescently-labeled, cleavable caspase-9 peptide (Figure 6B).  There was 

significant caspase 9 activation at 24- and 48-hours, consistent with the mitochondrial stain data. 

These data further suggest that Fluvastatin induces apoptotic cell death via a mitochondrial 

pathway. 

 

P815 cells upregulate cKIT and undergo cytotoxic autophagy in response to 

Fluvastatin treatment. 

 

P815 cell express a mutant cKIT (D814Y) that is analogous to the common human (D816V) 

point mutation, and a major contributor to this neoplasm (6, 19, 20). Interestingly, we found that 

Fluvastatin treatment induced a 2-fold increase in surface cKIT, peaking 24 hours after co-

culturing cells, which was just prior to the onset of apoptosis (Figure 7A). We postulate that this 

may serve to delay apoptosis. To determine if autophagy was also occurring at this time point, 

P815 cells were treated for 24-hours with vehicle or Fluvastatin (10μM) in the presence or 

absence of chloroquine. Cells were stained with FITC anti-cKIT for visualization and acridine 

orange for assessment of acidic vesicles, indicative of autophagic flux. We observed that 

chloroquine treatment alone increased acridine orange staining, a testament of the basal 

autophagic flux. Fluvastatin alone appeared to decrease acridine orange staining, perhaps 

because it promoted autophagic processing to completion. In support of this, 

Fluvastatin+chloroquine appeared to induce more acridine orange staining than either drug alone 

(Figure 7B). To quantify and substantiate these observations, flow cytometry was used to 

quantify acridine orange staining. When comparing the basal level of acridine orange staining in 

the chloroquine (CQ)-treated samples to the combination of Fluvastatin and CQ, a significant 

increase of MFI was observed (Figure 7C), supporting the fluorescent microscopy findings. 
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Finally, we tested the functional importance of autophagy in P815 mastocytoma cells undergoing 

Fluvastatin-mediated apoptosis. In contrast to our findings with primary mast cells, chloroquine 

decreased Fluvastatin-mediated apoptosis by more than 50% (Figure 7D). These data argue that 

autophagy is cytotoxic in P815 cells, since its blockade reduces apoptosis, and suggest that drugs 

promoting autophagy might be useful in treating mast cell neoplasia.  

Discussion 

 
Mast cells fulfill their primary immunological functions in defense against bacterial and parasitic 

infections. However in many disease states, environmental antigens become immunogenic and 

can lead to life threating anaphylaxis. There is an early and a late phase of mast cell activation 

that collectively cause immediate and long term effects such as vasodilation, capillary leakage, 

and recruitment and activation of other immune cells.  Mast cells can be activated through IgE 

receptors when antigen aggregates receptor-bound IgE. The early phase of activation occurs 

when pre-formed granules containing histamine and proteases are released, causing increased 

vascular permeability and vasodilation. The late phase follows 4-6 hours later, and is elicited by 

cytokine and chemokine production (21, 22). 

Clinical studies have shown correlations between asthmatic/allergic patients on statin 

therapy and reduced emergency department visits for their respective ailments (5, 23). The apical 

antagonism of HMG-CoA reductase by statins in the cholesterol pathway also reduces 

geranylgeranyl pyrophosphate and farnesyl pyrophosphate production.  These isoprenoid lipids 

are coupled to Ras, Rac and Rho, and are critical to their function (16). The loss of isoprenylation 

results in production of small G-proteins without membrane anchorage, resulting in a lack of signal 

transduction following a ligand-receptor interaction. Mechanisms possibly explaining statin anti-
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allergic effects include our recent demonstration that Fluvastatin decreases MAPK and AKT 

signaling pathways activated by IgE crosslinking, with some genotypic constraints (14, 15). In 

longer time courses, we noted that significant percentages of bone marrow derived mast cells 

(BMMCs) underwent apoptosis when treated with statins, prompting the current studies. 

This work shows that primary mast cells treated with Fluvastatin undergo a p53-dependent 

apoptosis, but with no discernible cell cycle arrest. Additionally, data from Bcl-2 transgenic 

BMMCs suggests that stabilizing the mitochondria blocks Fluvastatin-induced death. These 

findings, coupled with data suggesting a cyto-protective phenotype of autophagy, support the 

possibility that autophagy results from mitochondria damage, a form of autophagy called 

mitophagy. In this model, increased apoptosis following autophagy blockade is a result of the cell’s 

inability to dispose of damaged mitochondria through mitophagy. Damaged mitochondria release 

reactive oxygen species (ROS) and have decreased oxidative phosphorylation, both detrimental to 

cellular heath and homeostasis (24-26). In addition there are publications showing that Bcl-2 and 

other anti-apoptotic proteins exit the mitochondria and transit to the endoplasmic reticulum (ER) 

to become recycled and shuttled to other mitochondria in the cell. Thus autophagy not only protects 

cells from ROS and metabolic dysfunction, but also controls sensitivity to apoptosis in the cell 

(27).  

The process of mitophagy involves proteins such as PINK1 and Parkin. The presence of 

these proteins is often used to validate mitophagy (24). The use of confocal microscopy to assess 

the co-localization of mitochondrial and lysosomal dyes in conjunction with etiology-specific 

proteins are the next direction necessary in supporting this theory. Signaling data shown in figure 

2 also support the known interaction of MAPK and the AKT-mTOR axis in mast cells, which are 

tasked with the tagging pro-apoptotic (BH3 only) proteins such as Bim for proteasome degradation 
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in mast cells (28-30). The decreased activity in the MAPK pathway supports this as a plausible 

mechanism for the increase of Bim or other pro-apoptotic proteins, which in turn antagonize Bcl-

2, leading to the release of cytochrome C and caspase activation. In addition, the trend toward a 

decrease of AKT-PI3K-mTOR axis needs to be further investigated, given studies describing the 

importance of TORC1 in primary mast cell homeostasis, and TORC2 signaling as a staple in 

neoplastic states. Additionally, TORC2 activation was found to positively regulate AKT signaling 

resulting in an amplification of proliferation in neoplastic mast cells (31). This signaling pathway 

merits further investigation to determine the effect of Fluvastatin on TORC2. These findings have 

assisted in unraveling mast cell biology and begun to shed light on the molecular mechanism of 

how statin therapies and autophagy inhibitors may have therapeutic effects on mast cell-associated 

disease.  

The findings our lab made with statin therapy on primary mast cells led us to become 

interested in the potential efficacy of statins on transformed mast cells. The P815 model used in 

our study conforms to several aspects of the mast cell leukemia diagnosis, including expression 

of the mutant cKIT receptor, which causes constitutive growth factor-independent proliferation 

(32, 33). There has been considerable research employing statin therapy with various cancer 

types, particularly those with mutant K-Ras or B-Raf. For example, one observational study 

found that non-small cell lung carcinoma (NSCLC) patients who were on statins had a better 

survival outcome compared with those on standard treatment (2, 12, 13, 34-39).  

The mechanism of Fluvastatin-induced apoptosis in P815 cells was similar to primary 

cells, with indications of mitchondrial damage. However, autophagy inhibitors decreased 

Fluvastatin-induced apoptosis, which was the opposite of our observations with primary mast 

cells. These results suggest a cytotoxic role of autophagy in this system, a difference that can be 
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potentially explained with observations in this study and the current literature. Mutant cKIT 

(D816V) leads to strong MAPK, PI3K-mTOR, and STAT5 signaling critical for mast cell 

survival (40). In Figure 7 it was shown that Fluvastatin treatment caused significant upregulation 

of the mutant cKIT receptor, possibly as a survival mechanism. These data, coupled with 

findings in the literature that oncogenic cKIT signals cause endoplasmic reticulum (ER) stress, 

suggest autophagy might enhance the toxicity of statins (19, 20).  The autophagic necessity to 

sequester and degrade ER components due to stress could abrogate the oncogenic KIT signals 

upregulated in the P815 cell line. This mechanism may support and provide a biological 

explanation for the anti-apoptotic phenomenon seen with the use of autophagy inhibitors.  

Additional research needed to substantiate this theory should include western blots of the SCF 

pathway and visualization of cKIT signal sequestration in ER autophagosomes (omegasomes) 

via confocal microscopy or immunoprecipitation of KIT in association with autophagic markers 

like LC3 or p62.  

Understanding the role of statin-mediated autophagy in both primary and transformed 

mast cells will allow researchers and clinicians to modulate autophagy appropriately as an 

adjuvant therapy in allergic and neoplastic conditions. A thorough understanding of the biology 

behind statin-mediated apoptosis could allow the use of small molecular targets to avoid some 

known side-effects of statin therapy such as rhabdomyolysis (41). For example, knowledge 

gained in further studies could guide drug selectivity for either geranylgeranyl or farnesyl 

pyrophosphate branches of the cholesterol synthesis pathway. This knowledge could have the 

potential to reveal new targets, reduce dangerous side effects, and exploit autophagy correctly in 

allergic or neoplastic conditions. 
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BMMCs were co-cultured with Fluvastatin at a concentration of 10µM in a 72hr time course. 

Apoptosis was evidenced via flow cytometry PI-DNA staining through the presence of for sub-

diploid DNA. (Figure 1A) A dose response of Fluvastatin was conducted at the 72hr time point 

on the BMMCs and apoptosis was measured via flow cytometry via PI-exclusion. (Figure 1B) 

BMMCs were co-cultured with Fluvastatin in a dose response and analyzed via flow cytometry 

for the presence of caspase 3/7 at 72hrs. (Figure 1C) BMMCs were co-cultured with Fluvastatin 

at 10µM for 72hrs and analyzed for cell cycle progression via PI-DNA staining. (Figure 1D) 

This figure is representative of three independent experiments (N=3).  A student’s t-Test was 

conducted and statistical significance is as depicted: *P≤0.05, **P≤0.01, ***P≤0.001, 

****P≤0.0001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

Fluvastatin induces apoptosis in C57BL/6 BMMCs. 
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C57BL/6 BMMCs were treated for 24hrs with Fluvastatin (Fluva) or vehicle (DMSO) and then 

starved for 4 hours prior to SCF stimulation (200ng/mL). Whole cell lysates were collected after 

5, 10, or 15 minutes of SCF activation with the exception of the unstimulated group (Unstim). 

ERK 1/2 and AKT were probed by Western blotting. (Figure 2A). Normalization of 

phosphorylated: total protein quantified as fold induction over minutes of SCF stimulation 

(200ng/mL) (Figure 2B). This figure is representative one experiment (N=3). A student’s t-Test 

was conducted and statistical significance is as depicted: *P≤0.05, **P≤0.01, ***P≤0.001, 

****P≤0.0001  

 

 

 

 

 

 

  

Figure 2  

Fluvastatin Decreases SCF signaling pathway in BMMCs. 
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C57BL/6 background p53KO with age-matched WT C57BL/6 BMMCs were co-cultured with 

Fluvastatin 10μM over a 72-hour time course (Figure 3A). (Representative N=1) C57BL/6 

background Bcl-2 transgenic with age matched C57BL/6 BMMCs were co-cultured with 

Fluvastatin 10μM over a 72-hour time course. Apoptosis was evidenced by the presence of sub-

diploid DNA identified via flow cytometry and PI-DNA staining. (Figure 3B).  Figure3A is 

representative of two independent experiments (N=3). Figure 3B is representative of three 

independent experiments (N=3).  A student’s t-Test was conducted and statistical significance is 

as depicted: *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001  

  

Figure 3 

 Apoptosis is dependent on p53 expression and mitochondrial stability. 
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C57BL/6 BMMCs were treated for 24-hours with vehicle (DMSO), chloroquine 10μM (CQ), 

rapamycin 200nM (rapa), or Fluvastatin 10μM alone or in combination. Whole cell lysates were 

collected and western blots were conducted for LC3I/II (Figure 4A). LC3 II protein levels 

normalized to GAPDH quantified in (Figure 4B). C57BL/6 BMMCs were co-cultured with 

vehicle (DMSO), chloroquine 10μM (CQ), bafilomycin A1 (BAF A1), or Fluvastatin 10μM 

(Fluva) alone or in combination for 48-hours. (Figure 1C,D) Figure 4A and 4B are 

representative of one experiment with N=3. Figure 4C is representative of three independent 

experiments (N=3). Figure 4C is representative of two independent experiments (N=3). A 

student’s t-Test was conducted and statistical significance is as depicted: *P≤0.05, **P≤0.01, 

***P≤0.001, ****P≤0.0001  

 

  

Figure 4 

 Fluvastatin induces cyto-protective autophagy in BMMCs 
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P815 cells were treated with vehicle (DMSO) or increasing doses of Fluvastatin during a 96-hour 

dose response prior to PI-DNA staining for apoptosis (sub-diploid DNA) (Figure 5A). P815 

cells were co-cultured in vehicle (DMSO) or Fluvastatin at 10μM for a 96-hour time course and 

analyzed via PI-DNA staining for apoptosis and cell cycle arrest (Figure 5B,C). This figure is 

representative of three independent experiments (N=3). A student’s t-Test was conducted and 

statistical significance is as depicted: *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001  

 

Figure 5  

Fluvastatin induces apoptosis in transformed mast cell lines. 
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A.           
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P815 cells were treated for 48-hours with vehicle (DMSO) or Fluvastatin at 10µM or .625µM 

and then stained with Di(OC6)3 for analysis of mitochondrial potential. A histogram 

representation and a graph displaying the mean florescence intensity (MFI) (Figure 6A).  P815 

cells were treated with vehicle (DMSO) or Fluvastatin 10µM for 24 and 48-hours and then 

assessed for caspase 9 presence via flow cytometry (Figure 6B). This figure is representative of 

three independent experiments. A student’s t-Test was conducted and statistical significance is as 

depicted: *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001  

  

Vehicle 

Fluvastatin 

 0.625 M 

Fluvastatin 

10 M 

Figure 6  
Fluvastatin treatment causes loss of mitochondrial potential and release of caspase 9 in 
transformed mast cells. 
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P815 cells were treated with either vehicle (DMSO) or Fluvastatin 10µM for 6, 12, 24, and 48-

hours before cKIT receptor staining (Figure 7A). P815 cells were treated with (DMSO), 

chloroquine 10µM (CQ), Fluvastatin 10µM (Fluva), or Fluvastatin 10µM with chloroquine 

10µM for 24-hours. Prior to fluorescent microscopy, P815 cells were stained with FITC anti-

cKIT, and acridine orange (Figure 7B) and mean florescence intensity (MFI) from flow 

cytometry of acridine orange staining conditions displayed in fluorescent imaging (Figure 7C). 

P815 cells were treated for 72-hours with vehicle (DMSO), chloroquine 10µM (CQ), Fluvastatin 

10µM (Fluva), and the combination treatment of chloroquine 10µM with Fluvastatin 10µM 

(Figure 7D). All figure 7A, 7B, 7C, and 7D are representative of three independent experiment 

(N=3). A student’s t-Test was conducted and statistical significance is as depicted: *P≤0.05, 

**P≤0.01, ***P≤0.001, ****P≤0.0001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7  
P815 cells exhibit pro-survival upregulation of D814V cKIT and cyto-toxic autophagy. 
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